Construction of Runge-Kutta type methods for solving ordinary differential equations

نویسندگان

  • Wensheng Tang
  • Yajuan Sun
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

Implicit Runge-Kutta Methods for Lipschitz Continuous Ordinary Differential Equations

Implicit Runge-Kutta(IRK) methods for solving the nonsmooth ordinary differential equation (ODE) involve a system of nonsmooth equations. We show superlinear convergence of the slanting Newton method for solving the system of nonsmooth equations. We prove the slanting differentiability and give a slanting function for the involved function. We develop a new code based on the slanting Newton met...

متن کامل

Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Abstract—In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing ...

متن کامل

Construction of stiffly accurate Two–Step Runge–Kutta Methods of order three and their continuous extensions using Nordsieck representation

We describe a construction of implicit two–step Runge–Kutta methods for ordinary differential equations in Nordsieck form and their continuous extensions. This representation allows accurate and reliable estimation of the local discretization errors and the application to differential equations with delays. Two stiffly accurate methods of order three with quadratic interpolants are derived, one...

متن کامل

Solving Linear and Non-linear Stiff System of Ordinary Differential Equations by Multi Stage Homotopy Perturbation Method

In this paper, linear and non-linear stiff systems of ordinary differential equations are solved by the multi-stage homotopy perturbation method (MHPM). The MHPM is a technique adapted from the standard homotopy perturbation method (HPM) where standard HPM is converted into a hybrid numeric-analytic method called multistage homotopy perturbation method (HPM). The MHPM is tested for several exam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 234  شماره 

صفحات  -

تاریخ انتشار 2014